4 common data integration pitfalls to avoid

According to Gartner1, through 2024, 50% of organizations will adopt modern data quality solutions to better support their digital business initiatives. As enterprises work towards modernizing their data management infrastructure, data integration remains a key focus area. The data integration process brings together data from multiple systems, consolidates it and delivers it to a modern data warehouse or data lake for various analytical use cases. While there is no one approach to data integration, typical steps include data ingestion, preparation, and ETL (extract, transform, load). This blog outlines some of the most common data integration pitfalls and discusses strategies to avoid them.