Detecting anomalous patterns in real-time data can lead to significant actionable insights in a wide variety of application domains, such as fraud detection, network traffic management, predictive healthcare, energy monitoring and many more.
However, detecting anomalies accurately can be difficult. What qualifies as an anomaly is continuously changing and anomalous patterns are unexpected. An effective anomaly detection system needs to continuously self-learn without relying on pre-programmed thresholds.
Join our speakers Ravishankar Rao Vallabhajosyula, Senior Data Scientist, Impetus Technologies and Saurabh Dutta, Technical Product Manager – StreamAnalytix, in a discussion on:
- Importance of anomaly detection in big data, types of anomalies, and challenges
- Prominent real-time anomaly detection application areas
- Approaches, techniques and algorithms for big data anomaly detection
- Sample implementation of a big data anomaly detection use case on the Gathr platform
Speakers:
Meet Gathr.
The only all-in-one data pipeline platform
- One platform to do it all - ETL, ELT, ingestion, CDC, ML
- Self Service, zero-code, drag and drop interface
- Built-in DataOps, MLOps, and DevOps tools
- Cloud-agnostic and interoperable
Data
Ingestion-
Change Data
Capture -
ETL/ELT Data
Integration -
Streaming
Analytics -
Data
Preparation -
Machine
Learning